Tonic and transient endocannabinoid regulation of AMPAergic miniature postsynaptic currents and homeostatic plasticity in embryonic motor networks.
نویسندگان
چکیده
Endocannabinoid signaling has been shown to mediate synaptic plasticity by retrogradely inhibiting presynaptic transmitter release in several systems. We found that endocannabinoids act tonically to regulate AMPA miniature postsynaptic current (mPSC) frequency in embryonic motor circuits of the chick spinal cord. Further, strong postsynaptic depolarizations also induced a short-lived endocannabinoid-mediated suppression of mEPSC frequency. Unlike many previous studies, endocannabinoid signaling was not found to influence evoked transmitter release. The results suggest a special role for spontaneous glutamatergic mPSCs and their control by endocannabinoids in the developing spinal cord. We determined that blocking endocannabinoid signaling, which increases spontaneous glutamatergic release, increased spontaneous network activity in vitro and in vivo. Previous work in spinal motoneurons had shown that reducing spontaneous network activity (SNA) chronically in vivo led to homeostatic increases in AMPA and GABA mPSC amplitude (homeostatic synaptic plasticity). Blocking endocannabinoid signaling in vivo, and thus increasing SNA, triggered compensatory decreases of both AMPA and GABA mPSC amplitudes. These findings, combined with previous results, are consistent with the idea that this form of homeostatic synaptic plasticity is a bidirectional process in the living embryo. Together, our results suggest a role for tonic signaling of endocannabinoids as a potential mechanism to regulate the level of SNA, which is known to be critical for synaptic maturation in the embryonic spinal cord.
منابع مشابه
In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord.
When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling, all of a cell's AMPAergic miniature postsynaptic currents (mEPSCs) are increased or decreased b...
متن کاملGABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential.
Homeostatic synaptic plasticity ensures that networks maintain specific levels of activity by regulating synaptic strength in a compensatory manner. When spontaneous network activity was blocked in vivo in the embryonic spinal cord, compensatory increases in excitatory GABAergic synaptic inputs were observed. This homeostatic synaptic strengthening was observed as an increase in the amplitude o...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملActivity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
In vitro differentiated embryonic stem (ES) cells have been proposed as potential donor cells for cell replacement therapies of neurodegenerative diseases. The functional synaptic integration of such cells appears conceivable because ES cell-derived neurons are well known to establish excitatory and inhibitory synapses. However, long-term synaptic plasticity, a prerequisite of memory formation,...
متن کاملFine-tuning of synaptic upscaling at excitatory synapses by endocannabinoid signaling is mediated via the CB1 receptor
The endocannabinoid 2-arachidonoylglycerol (2-AG) functions as a retrograde signaling molecule mediating synaptic transmission and plasticity at both inhibitory and excitatory synapses. However, little is known about whether 2-AG signaling is involved in homeostatic regulation of miniature synaptic events at excitatory synapses in response to activity deprivation. Here, we report that chronic b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 39 شماره
صفحات -
تاریخ انتشار 2012